石井 慶子 Keiko Ishii

理工学部 准教授

Associate Professor, Faculty of Science and Engineering

背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ

熱流動を解明し、熱の無駄を解消する「スマート流体システム」を実現する
Develop a “smart fluid system” that optimizes thermal flow and minimizes heat waste.

熱はエネルギーの墓場と言われています。それは、1次エネルギー* の6割以上が「熱」として捨てられているからです。一方で発電されるエネルギーの約6割は給湯や空調などの「熱」の発生を目的に使用されます。私は捨てられる熱を、給湯・空調等に利用できるようにしたい。熱は、流動がブラックボックスで、制御が難しく、思うように管理する技術は確立できていません。その課題解決に向けて、私は冷媒合成技術、熱流体可視化計測技術を用いて、発熱、高温環境時には物体を冷却・熱を保存し、必要な時にその熱を取り出すことができる新しい熱利用方式、スマート流体システムの開発を行っていきます。
* 一次エネルギー:加工されない状態で供給されるエネルギーのこと。石油、石炭、原子力、天然ガス、水力、地熱、太陽熱など。

Heat is often referred to as the graveyard of energy. Because, with over 60% of primary energy wasted as "heat". Meanwhile, approximately 60% of the generated energy is used to produce "heat" for hot water supply and air conditioning. Our objective is to harness waste heat effectively to mitigate this situation. However, heat remains a 'black box' in terms of flow, making it difficult to control and manage efficiently. No existing technology enables precise control over heat as desired.. To address this challenge, we aim to leverage refrigerant synthesis technology and thermal-fluid visualization measurement techniques to develop a new heat utilization method: a smart fluid system. This system will enable cooling in high-temperature environments, heat storage, and extraction of stored heat as needed.

背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ 背景モチーフ

Research 01

ひとりでに動く流体が、熱を保存し、必要な時に熱を再現!流体制御が地球を救う!

熱磁気駆動による熱保存と再熱化のシステム

A self-propelling fluid that stores heat and releases it on demand! Fluid control to save the planet!

System for storing and releasing heat using a thermal magnetic drive

冷媒合成技術、熱流体可視化計測技術を用いて、発熱、高温環境時には物体を冷却・熱を保存し、その熱を必要な時に取り出せる新しい熱利用システムの開発を行っています。具体的には、流体に複数の機能性を持たせた、「マイクロカプセル型冷媒」を提案しています。これは、マイクロカプセルの中に磁性材や蓄熱材を注入して流体に混ぜ、冷媒機能を持つ流体を実現する技術です。流体の可視化計測技術との併用で、実用化を目指しています。

By leveraging refrigerant synthesis technology and thermal-fluid visualization measurement techniques, we are developing a new heat utilization system capable of cooling objects, storing heat in heat-generating or high-temperature environments, and extracting it when needed. Specifically, we are introducing a “microencapsulated refrigerant” that endows the fluid with multiple functions. This technology injects magnetic and heat storage materials into microcapsules, which are then mixed with the fluid to create a fluid with refrigerant functions. Our goal is to bring this innovation to practical use by integrating it with fluid visualization technology.

この研究が世の中にもたらす可能性

Research Possibilities: what the research create to the World

エネルギー、冷凍空調業界、化学メーカー、自動車メーカー、鉄鋼メーカー

液体や気体で熱を伝達していた産業において熱効率の大きな向上を期待できる。応用分野には低温排熱の有効利用空調や冷凍庫の省エネルギー化、工場や焼却場の排熱の利用改善などがある。

Energy, refrigeration, and air conditioning industries, chemical manufacturers, automobile manufacturers, steel manufacturers

A significant improvement in thermal efficiency is expected in industries that previously transferred heat using liquids and gases. Applications include the effective use of low-temperature waste heat to conserve energy in air conditioning and freezers, as well as enhanced waste heat recovery in factories and incinerators.

Research 02

可視化と高度制御で、熱利用に新たな可能性をもたらす

温度速度場の情報を高精度に計測

Enabling new possibilities for heat utilization through visualization and advanced control

High-precision measurement of temperature and velocity field data

任意断面の温度場を高精度で計測する技術はあまり存在せず、近年計測法が発達してきた分野です。温度を可視化することによって、目で見て分かりやすくなるだけでなく、気になった部分の解析も可能になります。従来からある赤外線カメラによる温度計測は可視化に優れた手法ですが、万能ではありません。そこで私は、温度分布と速度分布を同時に示す、「温度速度場」に注目しました。具体的には、温度速度場の計測で大量の情報を、統計的に高精度、高時間分解能で取得することを目指しています。こうした解析を元に、熱保存と再熱化の仕組みを確立します。図は、 自励振動ヒートパイプ内部を温度場計測した結果です。

Few technologies can measure temperature fields at any cross-section with high precision. Measurement methods have been developed in this field in recent years. Visualizing temperature not only facilitates understanding but also enables the analysis of areas of concern. While conventional temperature measurement techniques based on infrared cameras are effective for visualization, it is not without limitations. In this study, we focus on the temperature-velocity field, which simultaneously shows the distribution of both temperature and velocity. Our goal is to gather extensive data on the temperature velocity field with high statistical accuracy and time resolution. Based on this analysis, we aim to establish a mechanism for heat storage and reheating. The figure shows measure temperature fields inside the self-excited vibration heat pipe.

この研究が世の中にもたらす可能性

Research Possibilities: what the research create to the World

エネルギー、冷凍空調業界、化学メーカー、自動車メーカー、鉄鋼メーカー

温度分布(スカラー場)の高度解析により、熱効率の抜本的向上を期待できる。応用分野には、ヒートパイプの効率向上や室内温度環境の省エネルギーでの改善、工場や焼却場の排熱の利用改善、空調や冷凍庫の省エネルギー化などがある。

Energy, refrigeration, and air conditioning industries, chemical manufacturers, automobile manufacturers, steel manufacturers

Advanced analysis of temperature distribution (scalar field) is expected to significantly improve thermal efficiency. Potential application areas include optimization of heat pipe performance, improvement of energy-efficient indoor temperature environments, more efficient exploitation of exhaust heat from factories and incinerators, and increase of the efficiency of energy-efficient air conditioners and freezers

実績

Achievements

2024/11

特許|Ppatent

石井 慶子、麓 耕二「感温磁性流体用粒子、感温磁性流体、感温磁性流体用粒子の製造方法及び感温磁性流体の製造方法」 JP Patent App、特許第7394436号

This is where the English text will be placed.

2024/8

論文|Journal

Keiko Ishii, Takahiro Ogiyama, Koji Fumoto, Yuta Nishina,“Enhanced thermal conductivity of fluids by percolating high-concentration few-layer graphene”, Applied Physics Letters 125(2) 2024.
(グラフェンナノ流体の創成についての論文)

(Paper on the creation of graphene nanofluids)

2023/5

論文|Journal

Keiko Ishii, Kosuke Kawayama, Koji Fumoto, “Synthesis and evaluation of high thermal conductivity magnetic heat storage inorganic microcapsules simultaneously containing gallium and magnetic nanoparticles by sol-gel method, Journal of Energy Storage“,Volume 59, 106426, 2023.
(機能性流体創成に関する論文)

(Paper on the creation of functional fluids)

2022.3

表彰|Commendation

日本機械学会 2021年度日本機械学会奨励賞(研究)「感温磁性粒子を含有したマイクロカプセルの生成と流動特性把握の研究」

Japan Society of Mechanical Engineers Encouragement Award, “Awarded for the creation of functional refrigerants and visualization technology”

2021.2

論文|Journal

Keiko Ishii, Yoshiko Ohno, Maiko Oikawa, Noriko Onishi, “Relationship between human exhalation diffusion and posture in face-to-face scenario with utterance, Physics of Fluids”, 33(2) 2021.
(呼気の可視化に関する論文、AIP publishing, Physics of Fluids, Featured Article選出)

(Paper on visualization of exhaled air, AIP publishing, Physics of Fluids, Featured Article)

経歴

Career

2011/3

東京理科大学理工学部土木工学科 卒業

Graduated from the Department of Civil Engineering, Faculty of Science and Technology, Tokyo University of Science.

2013/3

東京理科大学大学院理工学研究科土木工学専攻 修士課程 修了

Completed a Master’s degree in Civil Engineering, Graduate School of Science and Technology, Tokyo University of Science.

2013/4-2016/3

日本学術振興会特別研究員(DC1)

Research Fellow (DC1) of the Japan Society for the Promotion of Science.

2017/3

東京大学大学院新領域創成科学研究科人間環境学専攻 博士課程 単位取得退学

Withdrew from a doctoral program in Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Toky.

2020/3

東京大学 博士(環境学)

Doctorate (Environmental Studies), University of Tokyo.

2017/4- 2020/9

青山学院大学理工学部機械創造工学科 助手

Assistant, Department of Mechanical Engineering, College of Science and Engineering, Aoyama Gakuin University.

2020/10 – 2023/3

青山学院大学理工学部機械創造工学科 助教

Assistant Professor, Department of Mechanical Engineering, College of Science and Engineering, Aoyama Gakuin University.

2020/9-現在

青山学院大学ジェロントロジー研究所 客員研究員 兼任

Visiting Researcher (concurrent post), Institute of Gerontology, Aoyama Gakuin University.

2023/4

中央大学理工学部精密機械工学科 准教授

Associate Professor, Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University

Photographer: Hajjime Kato Editor: Hidetoshi Shibata

背景モチーフ 背景モチーフ